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Abstract: In this paper we investigate properties of the Steiner symmetrization in the complex plane. We use two
recursive dynamic processes in order to derive some inequalities on analytic functions in the unit disk. We answer
a question that was asked by Albert Baernstein II, regarding the coefficients of circular symmetrization functions.
We mostly deal with the Steiner symmetrization G of an analytic function f in the unit disk U . We pose few
problems we can not solve. An intriguing one is that of the inequality∫ 2π

0
|f(reiθ)|pdθ ≤

∫ 2π

0
|G(reiθ)|pdθ, 0 < p <∞

which is true for p = 2 but can not be true for too large p. What is the largest such exponent or its supremum?
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1 Some extremal problems
Definition 1 Let 2 ≤ p ≤ ∞, 0 < α < ∞. We
define:

S(p, α) = {f | f ∈ H(U), f is univalent inU,

f(0) = 0, 1 ≤ |f ′(0)|, α ≤ ||f ||p}
where H(U) is the space of all the functions that are
holomorphic in the unit disc U = {z ∈ C | |z| < 1},
and

||f ||pp = lim
r→1−

1

2π

∫ 2π

0
|f(reiθ)|pdθ.

So ∀ f ∈ S(p, α), the f -image f(U) is simply con-
nected and f(U) 6= C.

Definition 2 Let 2 ≤ p ≤ ∞, 0 < α < ∞. We
define:

N(p, α) = inf
f∈S(p,α)

∫ 2π

0
|f ′(eiθ)|dθ.

Proposition 3 If 2 ≤ p ≤ ∞, 0 < α <∞, then there
exists a function f ∈ S(p, α) such that:

N(p, α) =

∫ 2π

0
|f ′(eiθ)|dθ.

Proof.
Since g(z) = (α + 1)z ∈ S(p, α) and∫ 2π
0 |g′(eiθ)|dθ = 2π(α + 1), it follows

that N(p, α) ≤ 2π(α + 1). So it will
suffice to consider the following subfamily
B(p, α) = {f | f ∈ S(p, α), ||f ||∞ ≤ π(α + 1)}
of S(p, α). The subfamily B(p, α) of S(p, α) is a
normal family (because it is uniformly bounded).
Moreover, B(p, α) is a compact family. For if
fn ∈ B(p, α) and fn → f uniformly on compact
subsets of U then f ∈ B(p, α) or f ≡ 0 (f(0) = 0).
But the condition 1 ≤ |f ′(0)| prohibits the second
alternative. �

Remark 4 If in the definition of S(p, α) the condition
1 ≤ |f ′(0)| would have been dropped out, then the
claim in Proposition 3 would have been false. Here is
an:

Example 5 For p = ∞ it is clear that 2α ≤ N(p, α)
because for every compatible function f we have 0 ∈
f(U) and there is a point ω ∈ f(U) that satisfies
|ω| = α (because α ≤ ||f ||∞). Now, consider a
sequence of simply connected domains Ωn that sat-
isfy 0, α ∈ Ωn, such that these domains become nar-
row as n → ∞ and converge to the closed inter-
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val on the X-axis, [0, α], and have smooth bound-
aries ∂Ωn. By the Riemann Mapping Theorem for
each n there exists a conformal and onto mapping
fn : U → Ωn such that fn(0) = 0. Clearly we have
lim

∫ 2π
0 |f ′n(eiθ)|dθ = 2α and hence if the condition

1 ≤ |f ′(0)|would have been dropped out from the def-
inition of S(p, α) we would have hadN(∞, α) = 2α,
but there were no extremal function. Note that in our
construction fn → 0 and clearly the function 0 is not
a compatible function.

Proposition 6 If 2 ≤ p ≤ ∞, 0 < α < ∞ and
if f ∈ S(p, α) was extremal for N(p, α), then the
simply connected domain f(U) can have no slits.

Proof.
Let us assume to the contrary that f(U) had a slit Γ.
Let D = f(U) ∪ Γ, i.e. D is the simply connected
domain we obtain from f(U) by erasing the slit Γ. By
the Riemann Mapping Theorem there exits a confor-
mal mapping F (z) defined on U such that F (U) = D
and F (0) = 0. We define the standard mapping
φ : U → U , by the formula, φ(z) = F−1(f(z)).
Then |φ(z)| ≤ |z| and ∀ z ∈ U f(z) = F (φ(z)).
Thus f ≺ F , i.e. f is subordinated to F . This implies
that the following three conditions hold true:
1. F (0) = 0, F conformal.
2. 1 ≤ |f ′(0)| ≤ |F ′(0)|, by the Schwarz Lemma.
3. α ≤ ||f ||p ≤ ||F ||p, by Littlewood Subordination
Theorem, [15] or page 422 in [13].
These imply that F ∈ S(p, α). But clearly we have∫ 2π
0 |F ′(eiθ)|dθ <

∫ 2π
0 |f ′(eiθ)|dθ, a contradiction to

the fact that f is extremal for N(p, α). �

We can strengthen the Proposition 6:

Proposition 7 If 2 ≤ p ≤ ∞, 0 < α < ∞ and
if f ∈ S(p, α) was extremal for N(p, α), then the
simply connected domain f(U) is a convex domain.

Proof.
Let us assume to the contrary that f(U) is not a
convex domain. By Proposition 6 it follows that
there are points ω1, ω2 ∈ ∂f(U) such that ω1 6= ω2

and such that the open non-degenerated segment Γ
between ω1 and ω2 lies in C − f(U). Let D be the
simply connected domain we get by the union of
f(U) and the bounded domain whose boundary is
the segment [ω1, ω2] and the corresponding part of
∂f(U) between ω1 and ω2. From this point the proof
proceeds as that of Proposition 6. Namely, by the
Riemann Mapping Theorem there exists a conformal
mapping F defined on U so that F (U) = D and
F (0) = 0. Then f ≺ F and so we have the same
three conditions:

1. F (0) = 0, F conformal.
2. 1 ≤ |f ′(0)| ≤ |F ′(0)|, by the Schwarz Lemma.
3. α ≤ ||f ||p ≤ ||F ||p, by Littlewood Subordination
Theorem, [15] or page 422 in [13].
These imply that F ∈ S(p, α). But clearly we have∫ 2π
0 |F ′(eiθ)|dθ <

∫ 2π
0 |f ′(eiθ)|dθ, a contradiction to

the fact that f is extremal for N(p, α). �

Proposition 8 If 2 ≤ p ≤ ∞, 0 < α < ∞ and if
f ∈ S(p, α) was extremal for N(p, α), and if |a| < 1
then either:

|f ′(a)| ≤ 1

1− |a|2
,

or ∫ 2π

0
|f(eiθ)− f(a)|p

(
1− |a|2

|eiθ − a|2

)
dθ ≤ αp.

In particular for a = 0: either |f ′(0)| = 1 or∫ 2π
0 |f(eiθ)|pdθ = ||f ||pp = αp.

Proof.
If

φ(z) =
z + a

1 + az

then

φ′(z) =
1− |a|2

(1 + az)2
.

We define F (z) = f(φ(z))− f(a). Then we have:
1.

∫ 2π
0 |F ′(eiθ)|dθ =

∫ 2π
0 |f ′(eiθ)|dθ because the

images F (U) and f(U) are congruent.
2. F ′(0) = (1− |a|2)f ′(a).

We also have the identity:∫ 2π

0
|F (eiψ)|pdψ =

∫ 2π

0

∣∣∣∣∣f
(
eiψ + a

1 + aeiψ

)
− f(a)

∣∣∣∣∣
p

dψ.

We make a change of the integration variable:

eiθ =
eiψ + a

1 + aeiψ
, dψ =

1− |a|2

|eiθ − a|2
dθ,

and we rewrite the above identity as follows:

3.∫ 2π

0
|F (eiθ)|pdθ =

∫ 2π

0
|f(eiθ)−f(a)|p

(
1− |a|2

|eiθ − a|2

)
dθ.

Now 1, 2 and 3 above imply that:

4. If we have both: 1 ≤ (1− |a|2)|f ′(a)| and

αp ≤
∫ 2π

0
|f(eiθ)− f(a)|p

(
1− |a|2

|eiθ − a|2

)
dθ,
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then F ∈ S(p, α) and hence F is extremal for
N(p, α). If both the inequalities in 4 are sharp (none
of them is an equality), then there is an M > 1 such
that M−1F (z) ∈ S(p, α), which contradicts the fact
that F (z) is extremal for N(p, α). Thus at least one
of the two inequalities in 4 is in fact an equality and
the proposition follows. �

2 Facts about symmetrizations
Motivated by the desire to solve the family of the
extremal problems N(p, α), we will discuss in this
section properties of symmetrizations of functions.
Specifically we will consider symmetrizations that
were introduced by Pölya and by Steiner. We will re-
call results from the paper [2].

Definition 9 Let D be a domain in the Riemann
sphere C∪{∞}. The circular symmetrization of D is
the domain D∗ that is defined as follows: for each t ∈
(0,∞) we define D(t) = {θ ∈ [0, 2π] | teiθ ∈ D}.
If D(t) = [0, 2π] then the intersection of D∗ with the
circle |z| = t is the full circle. If D(t) = ∅ then the
intersection of D∗ with the circle |z| = t is the empty
set ∅. If D(t) is a non trivial subset of [0, 2π] which
has the measure |D(t)| = α′, then the intersection of
D∗ with the circle |z| = t is the unique circular arc
given by {teiθ | |θ| < α′/2}. Finally D∗ contain the
point 0 (∞) if and only if D contains the point 0 (∞).

Section (j) of the paper [2] includes a proof of an
important principle in symmetrization:
Let f ∈ H(U) and let us denote D = f(U). Let D0

be a simply connected domain that contains D∗, and
let us assume that D0 is not the full complex plane
(C). Let F be a conformal mapping of U onto D0

that satisfies F (0) = |f(0)|. The following result is
proved in [2]:

Theorem 6. ([2]) If Φ is a convex non-decreasing
function on (−∞,∞), f ∈ H(U) and F as above,
then for all 0 ≤ r < 1 we have:∫ π

−π
Φ(log |f(reiθ)|)dθ ≤

∫ π

−π
Φ(log |F (reiθ)|)dθ.

If we choose in Theorem 6 above, Φ(x) = e2x and as-
sume that we have the following expansions: f(z) =∑∞
n=0 anz

n and F (z) =
∑∞
n=0Anz

n, then we ob-
tain the inequality

∑∞
n=0 |an|2r2n ≤

∑∞
n=0 |An|2r2n

for 0 ≤ r < 1. By the definition of F we have
|A0| = |a0|, thus if we subtract |A0|2 from both
sides of the inequality and divide by r2 and than take
r → 0+ we obtain |f ′(0)| ≤ |F ′(0)|, a classical result
of Walter Hayman. If f is one-to-one in U then both

D and D∗ are simply connected and we can take F to
be a conformal mapping from U onto D∗ for which
F (0) = |f(0)|.

At the end of section (k) in [2] the author asks if
the following is true for all n: |an| ≤ |An|? Is the fol-
lowing weaker set of inequalities true:

∑n
k=0 |ak|2 ≤∑∞

k=0 |Ak|2? A. Baernstein II, remarks that these last
inequalities if true, would prove a conjecture of Lit-
tlewood: If f is one-to-one and analytic in U and if
f(z) 6= 0, for z ∈ U , then for each n > 1 we have:
an ≤ 4n|a0|.
(We give a proof for this assertion, for the reader’s
convenience. Assume a0 = 1. We define g(z) =√
f(z) and h(z) = −g(z). Then g, h ∈ H(U)

(because f(z) never vanishes in U ). Both g and
h are one-to-one in U (because g(z1) = g(z2) ⇒
f(z1) = f(z2) ⇒ z1 = z2). Let us suppose that
g(z) =

∑∞
n=0 αnz

n, where α0 = 1. We denote
D = g(U). If ξ0 ∈ D then −ξ0 6∈ D (because
g(U) ∩ h(U) = ∅). Hence for any 0 < t < ∞ we
must have |D(t)| ≤ π. We conclude that for the sym-
metrization we have: D∗ ⊆ {z ∈ C | <{z} ≥ 0}.
Let G(z) be a conformal mapping from U onto D∗
such that G(0) = g(0) = 1. Then for all |z| < 1 we
have <{z} ≥ 0 and hence if G(z) = 1 +

∑∞
n=1Bnz

n

then by a result of Constantine Carathéodory we have
|Bn| ≤ 2 for all n = 1, 2, 3, . . .. We conclude that∑n
k=1 |Bk|2 ≤ 4n which implies (assuming Baern-

stein’s assumption above) that
∑n
k=0 |αk|2 ≤ 4n. We

recall that f = g2 and hence:

|an|2 = |α0αn + α1αn−1 + . . .+ αnα0|2 ≤

≤ (2|αn|+ |α1||αn−1|+ . . .+ |αn−1||α0|)2 ≤

(4 + 4(n− 1)) · 4n = (4n)2.

�)
The Bieberbach conjecture implies Littlewood’s con-
jecture, [9]. So by now we know that both conjectures
are true, [4].

Concerning the first question posed by Albert
Baernstein II (above): Let f be a conformal func-
tion defined on U . We assume that f(U) has a finite
area. Let us denote D = f(U), and let F be a confor-
mal mapping of U onto the symmetrization D∗ such
that F (0) = |f(0)|. Let us denote by S(D) and by
S(D∗) the areas of the respective domains. We will
use tdφ · dt for the area element in polar coordinates.
Then we have the identities:

S(D) =

∫ ∞
0

∫
D(t)

tdφ · dt =

∫ ∞
0

t|D(t)|dt,

S(D∗) =

∫ ∞
0

t|D∗(t)|dt.
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By the definition of D∗ it follows that for all 0 ≤
t < ∞ we have D(t) = D∗(t) and hence S(D) =
S(D∗) (the well-known fact that circular symmetriza-
tion is an area preserving transformation). On the
other hand we have S(D) =

∫ 1
0

∫ 2π
0 r|f ′(reiθ)|2dθdr

and if f(z) =
∑∞
n=0 anz

n and F (z) =
∑∞
n=0Anz

n

then we obtain the well known formulas: S(D) =
π
∑∞
n=0 n|an|2, and S(D∗) = π

∑∞
n=0 n|An|2. We

conclude that
∑∞
n=0 n|an|2 =

∑∞
n=0 n|An|2. We re-

call that by the definition of F we have A0 = |a0| and
by Hayman’s result |a1| ≤ |A1| and so either |an| =
|An| for n = 0, 1, 2, . . . or there exist 1 ≤ n1, n2 so
that |an1 | < |An1 |, and |An2 | < |an2 |. We proved the
following:

Theorem 10 If f(z) =
∑∞
n=0 anz

n is analytic, one-
to-one in U and f(U) has a finite area. If F (z) =∑∞
n=0Anz

n is the circular symmetrization of f(z),
then we have:

∑∞
n=0 n|an|2 =

∑∞
n=0 n|An|2 and ei-

ther for all n = 0, 1, 2, . . . we have |an| = |An|, or
there exist 1 ≤ n1, n2 such that |an1 | < |An1 | and
|An2 | < |an2 |.

Theorem 10 answers the problem mentioned above
that was raised by Albert Baernstein II. The answer
in negative.
Next, let f(z) =

∑∞
n=0 anz

n, z ∈ U , be analytic and
one-to-one, and assume that ∂D = ∂f(U) is rectifi-
able.

Remark 11 Let 0 < a < b, 0 < h. Then the sum of
the lengths of the legs of a trapezoidal with bases of
lengths a and b and height of length h is minimal, if
and only if the legs are equal to one another. The same
fact is true also for circular a trapezoidal which has
bases (of lengths a and b) located on two concentric
circles of radii R and R+ h.

Let γ be a rectifiable curve. Let the (finite) length of γ
be denoted by l(γ). We chose a finite number of points
on γ and join successive points by straight segments.
The result is a polygonal curve that is composed of
the straight segments γ1, γ2, . . . , γn (we assume they
come geometrically one after the other). The length
of the polygonal curve is the finite sum ln(γ) =∑n
j=1 l(γj). When we refine the division points and

take n→∞ we obtain l(γ) = limn→∞ ln(γ). By the
definition of D∗ and by remark 11 it follows that in
order to compute the lengths l(∂D) and l(∂D∗), if at
each approximation step we take our division points
to be the intersection points of ∂D (∂D∗) with sets of
concentric circles centered at the origin and of radii
0 < t1 < t2 < . . . < tn, so that 0 < tj+1 − tj < εn,
j = 1, 2, . . . , n − 1, εn →n→∞ 0+, we obtain the in-
equalities: ln(∂D∗) ≤ ln(∂D). Hence when n → ∞

we obtain the well known fact l(∂D∗) ≤ l(∂D) (cir-
cular symmetrization reduces the perimeter). On the
other hand we have the two identities:

l(∂D) =

∫ 2π

0
|f ′(eiθ)|dθ, l(∂D∗) =

∫ 2π

0
|F ′(eiθ)|dθ.

Here f is a conformal mapping defined on U with the
image D = f(U) and F is a conformal mapping de-
fined on U with the image F (U) = D∗ (which is sim-
ply connected as well).

Definition 12 Let D be a domain in the Riemann
sphere C ∪ {∞}. The Steiner symmetrization of D
is the domain D∗S that is defined as follows: for each
t ∈ (−∞,∞) we defineD(t) = {t+iy ∈ C | t+iy ∈
D}. If D(t) = ∅ then the intersection of D∗S with the
vertical line H(t) = {z ∈ C | <{z} = t} is the empty
set ∅. If D(t) = D ∩ H(t) is a non-empty and has
the measure |D(t)| = α′, then the intersection of D∗S
with the line H(t) is the unique segment or line given
by {t+ iy ∈ C | |y| < α′/2}.

Let G be a conformal mapping defined on U with
the image G(U) = D∗S (which is simply connected).
We assume as above that the boundary curves ∂D =
∂f(U) and ∂D∗S = ∂G(U) are rectifiable. Then the
remark above shows that we also have ln(∂D∗S) ≤
ln(∂D), where this time we take our division points
to be the intersection points of ∂D (∂D∗S) with sets of
parallel vertical lines of x-coordinates −∞ < t1 <
t2 < . . . < tn < ∞, so that 0 < tj+1 − tj < εn,
j = 1, 2, . . . , n − 1, εn →n→∞ 0+. We have the
identity:

l(∂D∗S) =

∫ 2π

0
|G′(eiθ)|dθ.

We just proved the well known:

Theorem 13 If f ∈ H(U), f is one-to-one, and the
boundary curve {f(eiθ) | 0 ≤ θ < 2π} is rectifiable.
If F is the circular symmetrization (Pölya) of f and if
G is the Steiner symmetrization of f (F (0) = G(0) =
|f(0)|), then the boundary curves {F (eiθ) | 0 ≤ θ <
2π} and {G(eiθ) | 0 ≤ θ < 2π} are rectifiable, and
we have the following two inequalities:∫ 2π

0
|G′(eiθ)|dθ ≤

∫ 2π

0
|f ′(eiθ)|dθ,

∫ 2π

0
|F ′(eiθ)|dθ ≤

∫ 2π

0
|f ′(eiθ)|dθ.

Remark 14 We comment the two items below in
connection to the second question of Baernstein and
the possible proof of the conjecture of Littlewood on
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non-vanishing one-to-one analytic functions in U .
We supply proofs to these well known facts, for the
convenience of the reader:

1. If F (z) is analytic and one-to-one in U and
satisfies 0 < <{F (z)}, then (F (z))2 is one-to-one in
U .

Proof.
(F (z1))

2 = (F (z2))
2 ⇒ F (z1) =

F (z2) or F (z1) = −F (z2). But if F (z1) = −F (z2)
then <{F (z1)} · <{F (z2)} < 0 which proves that
F (z1) = F (z2) and hence z1 = z2. �

2. If f ∈ H(U) is one-to-one in U and f(z) 6= 0 in U
and if F (z) is the circular symmetrization of

√
f(z),

then (F (z))2 is the circular symmetrization of f(z)
(and vice versa).

Proof.
By remark 1 above (F (z))2 is one-to-one which
implies the claim. �

We need one more well known fact, this time on the
Steiner symmetrization. This fact is a consequence
of Baernstein’s symmetrization inequality for Green
function. See [2], and Theorem 2.5 in [3]. We men-
tion (although we do not make a use of it) that the case
of equality for the Green functions was not treated by
Baernstein. It was later on considered by Essén and
Shea in [10]. Our proof uses the fact that we can
regard Steiner symmetrization as a limiting case (at
infinity) of circular (Pölya) symmetrization. We will
outline it below.

Theorem 15 If f is analytic and one-to-one in U and
if G is the Steiner symmetrization of f , then for any r,
0 ≤ r < 1 we have the inequality:∫ 2π

0
|f(reiθ)|2dθ ≤

∫ 2π

0
|G(reiθ)|2dθ.

Proof.
Let 0 < M . Let FM (z) be the circular symmetriza-
tion of the shifted function M + f(z). Let us denote
GM (z) = FM (z) − M . We will use the theorem
of Baernstein ([2], Theorem 6) cited above. For any
0 < p <∞:∫ 2π

0
|M + f(reiθ)|pdθ ≤

∫ 2π

0
|FM (reiθ)|pdθ.

This can be re-written as follows:∫ 2π

0
|M + f(reiθ)|pdθ ≤

∫ 2π

0
|M +GM (reiθ)|pdθ.

which proves the following:

∫ 2π

0

(
1 +

p

M
<{f(reiθ)}+

1

M2

{
p2

4
|f(reiθ)|2+

+2

(
p/2
2

)
<{(f(reiθ))2}

})
dθ ≤

≤
∫ 2π

0

(
1 +

p

M
<{GM (reiθ)}+

1

M2

{
p2

4
|GM (reiθ)|2+

+2

(
p/2
2

)
<{(GM (reiθ))2}

})
dθ+

+o

(
1

M2

)
.

But limM→∞GM = G the Steiner symmetrization of
f , uniformly on compact subsets of U . This proves
(on taking M →∞) that:∫ 2π

0
|f(reiθ)|2dθ ≤

∫ 2π

0
|G(reiθ)|2dθ. �

Remark 16 The analog of the theorem of Baern-
stein (Theorem 6, quoted above) to Steiner
symmetrization is false, i.e. the statement∫ 2π
0 |f(reiθ)|pdθ ≤

∫ 2π
0 |G(reiθ)|pdθ for 0 < p < ∞

is false. It is easy to construct a counterexample.
Thus p = 2 is an exception. This naturally raises a
question.

A problem (the means of the Steiner sym-
metrization):
Find the largest possible 2 ≤ p0 for which
∀ 0 ≤ r < 1 and ∀ p ≤ p0 (or ∀ p < p0) we
have the inequality:∫ 2π

0
|f(reiθ)|pdθ ≤

∫ 2π

0
|G(reiθ)|pdθ,

for any f ∈ H(U), one-to-one in U , with f(0) = 0,
where G is the Steiner symmetrization of f .

By Theorem 15 above we know that 2 ≤ p0 and
that the inequality is valid for p = 2.

We conclude this section with a simple demonstration
of the type of reductions we can make so far concern-
ing the solution of the family of problems N(p, α).

Proposition 17 If 2 ≤ p ≤ ∞, 0 < α < ∞, and
if f ∈ S(p, α) is an extremal function for N(p, α)
then we may assume that the domain f(U) is circular
symmetric (Pölya symmetric).
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Proof.
Let the function F be the Pölya symmetrization of the
extremal function f . Then the following three proper-
ties hold true:
1. F ∈ H(U), F (0) = 0, F is one-to-one in U .
2. 1 ≤ |f ′(0)| ≤ |F ′(0)|, by a classical result of Wal-
ter Hayman.
3. α ≤ ||f ||p ≤ ||F ||p, by Littlewood Subordination
Theorem, [15] or page 422 in [13].
As in Theorem 13, it follows that:∫ 2π

0
|F ′(eiθ)|dθ ≤

∫ 2π

0
|f ′(eiθ)dθ.

But by the assumption, the function f is an extremal
function for the problem N(p, α), and so it follows
that also the function F is extremal for the problem
N(p, α). �

3 A solution of the problem N(2, α)

We will present a solution of the simple case N(2, α).
Already here we will conclude a few interesting
conclusions. For example, we will be able to prove
the convergence of certain infinite products of geo-
metric parameters which we can not easily explicitly
compute. The main argument will be based on the
compactness of the family S(2, α). Let f ∈ S(2, α),
0 < α < ∞. We will outline a simple recursive
process that constructs in each phase a function g
which satisfies the two properties:
1. g ∈ S(2, α).
2.
∫ 2π
0 |g′(eiθ)|dθ ≤

∫ 2π
0 |f ′(eiθ)|dθ.

In fact the 1-norm of g′(eiθ) will be smaller
than or equals to the same norm of the function
constructed in the previous step.
Step 1: We choose an angle φ and define
fφ(z) = eiφf(z).
Step 2: We compute the function gφ(z), the Steiner
symmetrization of fφ.

We note that gφ has the following 4 properties:
gφ ∈ H(U), gφ is one-to-one and gφ(0) = 0.
1 ≤ |f ′φ(0)| ≤ |g′φ(0)|, by the result of Walter
Hayman mentioned before.
α ≤ ||fφ||2 ≤ ||gφ||2, by Theorem 15.∫ 2π
0 |g′φ(eiθ)|dθ ≤

∫ 2π
0 |f

′
φ(eiθ)|dθ, by Theorem 2.5.

Step 3: We compute the following number:

cφ = max

(
1

|g′φ(0)|
,

α

||gφ||2

)
,

and then we have 0 < cφ ≤ 1. We compute g(z) =
cφgφ(z).

Remark 18 In less formality we can describe the pro-
cess that was outlined above as follows:
1. Rotate f(U) about 0 (in an angle φ).
2. Perform Steiner symmetrization of the rotated do-
main.
3. Shrink the domain that was obtained, by an optimal
factor cφ, where 0 < cφ ≤ 1.

Definition 19 Let D be a domain that contains the
origin, 0. The φ-deformation of D is the domain Dφ

which we get by the Steiner symmetrization of eiφD.
In other words Dφ is the resulting domain after steps
1 and 2 in the process we described above.

Definition 20 If f ∈ S(2, α) and if φ is a real
number, we will denote the function g which is ob-
tained after executing the process above (steps 1, 2
and 3), by g = fφ. The number cφ will be called
the shrinking factor.

If {φn}∞n=1 is a sequence of real numbers, then
the corresponding sequence of shrinking factors
will be defined to be the sequence of the shrinking
factors we obtain by executing the following iterative
process:
{f, fφ1 , (fφ1)φ2 , ((fφ1)φ2)φ3 , . . .}.

If {Dn}∞n=1 is a sequence of bounded domains,
and if D is a bounded domain, then we will say
that the sequence of the domains converges to to the
domain D and write Dn → D, if for any ε > 0 there
exists a number N such that for all n > N we will
have distance(∂Dn, ∂D) < ε. We have the following
surprising fact:

Theorem 21 If 0 < α < ∞, and if f ∈ S(2, α) and
also {φn}∞n=1 is any sequence of real numbers, then
we have the double inequality:

0 <
∞∏
n=1

cφn ≤ 1.

Proof.
For each n, n = 1, 2, 3, . . ., we have 0 < cφn ≤ 1.
Hence 0 ≤

∏∞
n=1 cφn ≤ 1. If

∏∞
n=1 cφn = 0 then

fφn → 0 uniformly on compact subsets of U . This,
however, contradicts the compactness of the family
S(2, α). �

Theorem 22 Let D be a bounded domain that con-
tains the origin, 0. Then, there exists a disk B whose
center is the origin, 0 and there exists a sequence
of φn-deformations of D that will be denoted by
{Dn}∞n=1 so that Dn → B, (The assumption means
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that D1 is the φ1-deformation of D, and Dn+1 is the
φn+1-deformation of Dn). Moreover, the disk B is
unique in the sense that if {D′n}∞n=1 is the sequence
of φ′n-deformations of D that satisfies D′n → B′, then
d(B) = d(B′) (equality of diameters).

Proof.
Firstly, we note that, if D is a bounded domain
that contains the origin, 0, and if φ is real number,
then the φ-deformation of D, Dφ, has its diame-
ter smaller than or equals to the diameter D, i.e.
d(Dφ) ≤ d(D).We denote by A the set of all the
domains D̃ for which there exists a finite sequence
of real numbers {αn}Nn=1 such that if D1 = Dφ1 ,
Dn+1 = (Dn)αn+1 , 1 ≤ n ≤ N − 1, then D̃ = DN .
We define d = inf{d(D̃) | D̃ ∈ A}. We claim that
0 < d <∞. For 0 ∈ D and hence there is a disk with
a positive-radius ε/2 about the origin, 0 is contained
in D. Hence ε ≤ d ≤ d(D). Moreover, there exists
a bounded domain B that contains the origin, 0 such
that d = d(B) and such that there is a sequence of φn-
deformations of D, {Dn}∞n=1 that satisfy Dn → B.
This domain B is a disk centered at 0: The domain
B has a diameter in every direction otherwise there
is a φ-deformation that properly shrinks diameters.
Since B has a minimal diameter, there is no way to
shrink its diameter properly using a φ-deformation. A
domain which has a diameter in every direction is a
disk (for the triangle inequalities imply that any pair
of diameters must intersect through their common
mid-point). Finally, if B is a disk and if 0 ∈ B, then
using a single φ-deformation we can bring B to be
a disk (with the same diameter) whose center is the
origin, 0.
Let us prove the uniqueness claim: we note that
a φ-deformation (just like Steiner symmetrization)
is an area preserving transformation. Hence if
2R = d(B′) then πR2 =

∫ ∫
D dxdy and we conclude

that d(B′) = d(B) = 2
√∫ ∫

D dxdy/π. �

We shall now solve the problem N(2, α).

Theorem 23 If 0 < α < ∞, and if G(z) =
max{1, α}z, then G ∈ S(2, α) and we have:

N(2, α) =

∫ 2π

0
|G′(eiθ)|dθ = 2πmax{1, α}.

Proof.
By Theorem 21 and Theorem 22 it follows that
among those functions that minimize, there is one
that conformally maps U onto a disk centered at the
origin, 0. Such a mapping has the form cz and since
it should belong to the family S(2, α), we necessarily
have: max{1, α} ≤ |c|. But by our assumption

the function solves (by minimizing) the extremal
problem. We conclude that |c| = max{1, α}. �

Remark 24 Our definition of the family S(2, α) re-
quires the condition 1 ≤ |f ′(0)| in order to obtain
a compact family. If instead of that condition we had
ε ≤ |f ′(0)| for some fixed 0 < ε, we could have solved
the corresponding problem N(2, α) similarly, except
that this time our multiplier had to be max{ε, α}. In
particular for small enough ε the solution would have
been G(z) = αz. We conclude that if f ∈ H(U), f
is one-to-one, f(0) = 0, and if we denote α = ||f ||2
then if α <∞ we can solve the problem N(2, α) with
a small enough ε > 0 (meaning ε < α) and obtain
a solution αz. This helps in proving the following in-
equality:

Theorem 25 Let f ∈ H(U), f(0) = 0. Then for
each 0 ≤ r < 1 we have the following inequality:(

1

2π

∫ 2π

0
|f(reiθ)|2dθ

)1/2

≤ r

2π

∫ 2π

0
|f ′(reiθ)|dθ.

In particular we have ||f ||2 ≤ ||f ′||1. Both inequali-
ties above are sharp.

Proof.
Let us start by assuming that we already proved the
first inequality for functions f ∈ H(U), for which
f(0) = 0, that are also one-to-one. Let g ∈ H(U)
satisfy g(0) = 0 and let 0 < r < 1. We consider the
conformal mapping f ∈ H(U) such that f(0) = 0
that satisfies g(U) ⊆ f(U). The function g is subor-
dinate to the function f (which means that there ex-
ists a w ∈ H(U), w(0) = 0, |w(z)| < 1 so that
g(z) = f(w(z))). By a theorem of Littlewood, [15]
or page 422 in [13], we have the following inequality:

1

2π

∫ 2π

0
|g(reiθ)|2dθ ≤ 1

2π

∫ 2π

0
|f(reiθ)|2dθ. (1)

Since we assumed that f is conformal, it follows by
our initial assumption (at the beginning of the proof)
that the following inequality is true:(

1

2π

∫ 2π

0
|f(reiθ)|2dθ

)1/2

≤ r

2π

∫ 2π

0
|f ′(reiθ)|dθ.

(2)
Finally (by the extension theorem of the Riemann
Theorem) the holomorphic mapping maps the bound-
ary of the domain onto the boundary of range domain
(the boundaries are smooth enough and we can use a
theorem of Constantine Carathéodory). Since f is (by
assumption) a conformal mapping it traces the outer
boundary of ∂g(rU) once, while the mapping g traces
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the same outer boundary at least once. We conclude
that:

1

2π

∫ 2π

0
|f ′(reiθ)|dθ ≤ 1

2π

∫ 2π

0
|g′(reiθ)|dθ. (3)

Equations (1),(2) and (3) prove the assertion of the
theorem for a general holomorphic g (given that the
assertion is known to be valid for one-to-one holomor-
phic mappings).

Thus from now on we can assume that the map-
ping f in the statement of the theorem is one-to-one.
We solve the problem N(2, α) which is presented in
remark 24. We will get the minimizing function αz.
We clearly have the identity:

α2 =
1

2π

∫ 2π

0
|f(reiθ)|2dθ.

The perimeter of the minimal circle is 2πα while the
perimeter of f(rU) is given by:

r

∫ 2π

0
|f ′(reiθ)|dθ.

We conclude the following inequality:

2π

(
1

2π

∫ 2π

0
|f(reiθ)|dθ

)1/2

≤ r
∫ 2π

0
|f ′(reiθ)|dθ.

This proves our inequality. Finally, if we take f(z) =
αz the inequality becomes an equality. This proves
that our inequality is, indeed sharp. �

4 The problems N(p, α) for values
2 < p <∞ of the parameter

Remark 26 The two inequalities of Theorem 25 were
proven for the value p = 2, using results on confor-
mal mappings. What can be said, at this point, on
similar inequalities but for values of the parameter p
different from 2? We will not tackle that problem di-
rectly. Instead, we will use convexity arguments in
the form of interpolation theory of operators. Inter-
polation theorems rely on two estimates given for two
different values of a parameter such as p, and extend
them by giving estimates for all the values of that pa-
rameter that reside between the two first values. Not
always, though the inequalities for the intermediate
values of p are sharp. That might happen also in cases
in which the two extreme estimates are sharp. At this
point we have our inequality (which is sharp) for the
value p = 2. Lemma 27 below provides the second
(sharp) inequality for p = ∞. This case is much eas-
ier than the case p = 2.

Lemma 27 Let the function f ∈ H(U) satisfy
f(0) = 0. Then for any value of r, 0 ≤ r < 1 we
have the following estimate:

max
0≤θ<2π

|f(reiθ)| ≤ r

2

∫ 2π

0
|f ′(reiθ)|dθ.

In particular we have the inequality ||f ||∞ ≤ π||f ′||1.
Both inequalities above are sharp.

Proof.
If the two inequalities of the lemma are true for f ∈
H(U), satisfying f(0) = 0 which are also one-to-one,
then like in the first part of the proof of Theorem 25 it
follows that the inequalities remain true in the general
case, where f is not necessarily one-to-one. Thus we
will assume from now and till the end of the proof
that the mapping f in the statement of the lemma is
also one-to-one. In this case we have as in the proof
of Theorem 25 at our disposal elementary facts from
plane geometry. The expression:

r

∫ 2π

0
|f ′(reiθ)|dθ,

is the perimeter of the domain f(rU). Clearly we
have:

2 max
0≤θ<2π

|f(reiθ)| ≤ r
∫ 2π

0
|f ′(reiθ)|dθ.

This last inequality is evident because 0 ∈ f(rU) and
because there exists a point w ∈ f(rU) for which:
w = max0≤θ<2π |f(reiθ)|. The first inequality of the
assertion follows. By remark 4 and by example 5 that
follows it, we conclude that the inequality is, indeed
sharp. �

Theorem 28 Let f ∈ H(U) satisfy f(0) = 0, and let
2 ≤ p ≤ ∞. Then for each value of r, 0 ≤ r < 1 we
have:(

1

2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p

≤ r

2π2/p

∫ 2π

0
|f ′(reiθ)|dθ.

In particular also the following inequality holds true:
||f ||p ≤ π(p−2)/p||f ′||1.

Proof.
The cases p = 2,∞ were proved in Theorem 25 and
in Lemma 27, respectively. We choose a small ε > 0
and assume that 2 < p < ∞. There exists an N ,
p < N such that for anyN < q we have the following
estimate:

(1/(2π))
∫ 2π
0 |f(reiθ)|qdθ

((r/(2π))
∫ 2π
0 |f ′(reiθ)|dθ)q

≤ πq−2+ε. (4)
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This follows from Lemma 27. In the band 0 <
<{z} < 1 we define the following function:

F (z) =
(1/(2π))

∫ 2π
0 |f(reiθ)|2z+q(1−z)dθ

((r/(2π))
∫ 2π
0 |f ′(reiθ)|dθ)2z+q(1−z)

.

Then F (z) is analytic in 0 < <{z} ≤ 1 (for if c > 0,
then cz is non-zero analytic). Let us write z = t+ is,
t, s ∈ IR, 0 ≤ t ≤ 1. By the triangle inequality we
obtain:

|F (z)| ≤ (1/(2π))
∫ 2π
0 |f(reiθ)|2t+q(1−t)dθ

((r/(2π))
∫ 2π
0 |f ′(reiθ)|dθ)2t+q(1−t)

.

Hence:
by equation (4) we have |F (is)| ≤ πq−2+ε, and
by Theorem 25 |F (1 + is)| ≤ 1.
By Hadamard Convexity Theorem we deduce that:

|F (t+ is)| ≤ π(q−2+ε)(1−t). (5)

Now, suppose that p = 2t+ q(1− t), then:

(q − 2 + ε)(1− t) = (p− 2) + ε

(
p− 2

q − 2

)
.

So by equation (5) we get:

(
1

2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p

≤

≤
(

r

2π2/p

∫ 2π

0
|f ′(reiθ)|dθ

)
πε(p−2)/(q−2).

Now, we will take q →∞ and obtain:(
1

2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p

≤ r

2π2/p

∫ 2π

0
|f ′(reiθ)|dθ.

The proof of the theorem is now complete. �

Theorem 29 If f ∈ H(U) and if ||f ′||1 < ∞, then
f ∈ Hp(U) for all p, 2 ≤ p ≤ ∞ and the following
inequality holds true:

||f ||p ≤ π(p−2)/p||f ′||1 + |f(0)|.

Proof.
We use Theorem 28 with the function f(z) − f(0),
and than use the triangle inequality. �

Remark 30 The inequalities in Theorem 28 are sharp
for p = 2,∞ and we get equalities for the extremal
function f(z) = αz, in the case p = 2. We do not

know if these inequalities are sharp for the other val-
ues of p, i.e. 2 < p < ∞. In any event for these
values of the parameter p, the function f(z) = αz
does not give us equality. Thus either the inequalities
in Theorem 28 are not sharp, or they are sharp but for
values 2 < p < ∞, the function f(z) = αz is not an
extremal function. Theorem 28 belongs to the family
of results that give estimates of the Hardy norms in
terms of the areas of the images of the functions. Our
inequality is not sharp at least for 0 < p < 2 + (1/2).
For these values of p sharp inequality (with the best
constant) can be obtained using Theorem 8.1 of [18],
and the classical isoperimetric inequality. The ex-
tremal functions are indeed f(z) = c · z. Our method
does not give the best constants as expected when one
uses interpolation techniques. However we deal not
just with estimates of the Hardy norms, but with esti-
mates that remain valid for the intermediate concen-
tric circles, i.e. f(rz) for 0 ≤ r < 1. We mention
two more papers that are closely related to estimating
Hardy norms in terms of area of the image domain:
[1], [14].

5 Few open problems

Here are four natural problems for which we do not
know the answer at this point:

1. Let f ∈ S and let F be the Steiner sym-
metrization of f . For which values of p, 2 ≤ p ≤ ∞
we have the following inequality?

∫ 2π

0
|f(reiθ)|pdθ ≤

∫ 2π

0
|F (reiθ)|pdθ.

We know that this inequality holds true for p = 2 (by
Theorem 15) and it is faulty for p =∞ (easy).

2. Let f ∈ S(2, α) and let {cφn}∞n=1 be a se-
quence of shrinking factors that deform f(U) into the
minimal disk. What is the value of the convergent
infinite product

∏∞
n=1 cφn?

3. Are the inequalities in Theorem 28 and in
Theorem 29 sharp? If not find the optimal constants
(which should be at most π(p−2)/p) and find the
optimal functions.

4. Are the extremal functions for the inequali-
ties in Theorem 28 (with optimal constants) unique?
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6 Inequalities on the real part of
Steiner symmetrization

The results of this section might be already known to
experts on Steiner symmetrization. The author was
not able to find in the literature these results. We re-
fer to the first sentence in section 4.11 on page 130 of
the book [12]. Here it is: ”Circular symmetrization is
more powerful than Steiner symmetrization, and any
result obtainable by the later method can also be ob-
tained by the former on taking exponentials, though
this may be less direct.” The author did not check the
validity of this declaration, however, the hint of con-
necting the two types of symmetrization by the ex-
ponential function was taken in order to try and re-
solve problem number 1 on the list of problems given
in the previous section (section 5). We did not man-
age to solve that problem. However, this idea in W. K.
Hayman’s book,[12], produced a family of integral in-
equalities comparing<{f(z)}with the real part of the
Steiner symmetrization <{F (z)} of f(z). We remark
that connecting the Circular symmetrization with the
Steiner symmetrization by the exponential function is
a very different idea than the geometric idea of con-
necting them by shifting the function to infinity. This
idea was presented in the proof of Theorem 15 and
gave us a positive answer to problem 1 above, in the
case where p = 2.

Let f ∈ H(U) and let us denote D = f(U).
Let D∗ be the Steiner symmetrization of D, with re-
spect to the x-axis. Then D∗ is a simply connected
domain. We recall that for each a ∈ IR, we de-
note: l(a) = meas{y ∈ IR | a + iy ∈ D}, and
we have by the definition of the Steiner symmetriza-
tion: D∗ = {a + iy | |y| < (1/2) · l(a)}. This
means that for any a ∈ IR the intersection of the
vertical line x = a with D∗ is either an empty set
or an open vertical interval (line segment) symmetric
about the x-axis at the point of the intersection, (a, 0):
{x = a}∩D∗ = {a+iy | |y| < (1/2)·l(a)}. This ver-
tical interval might be a full line parallel to the y-axis,
in the case that l(a) =∞.

Let us apply (as suggested by Hayman) the expo-
nential mapping to this line segment:

exp ({x = a} ∩D∗) =

{
eaeiy

∣∣∣∣ |y| < 1

2
l(a)

}
. (6)

This is a circular arc. This arc is a proper arc of
the circle |z| = ea provided that l(a) ≤ 2π. If 2π <
l(a) then the arc visits some of the points of the circle
|z| = ea at least twice. This means that in any event
the set exp(D∗) is a circular symmetric domain. If for
all a ∈ IR we have l(a) < 2π then the set exp(D∗)
is a simply connected circular symmetric domain. For

any a ∈ IR we have the following identity:

{|z| = ea}∩exp(D) = {z | |z| = ew, w ∈ D,<{w} = a}.

We note that the total length of the arcs that comprise
the set {|z| = ea} ∩ exp(D) is ea · l(a), so when we
form the Pölya symmetrization of exp(D) we obtain:⋃

a∈IR

{
ea · eiθ

∣∣∣∣ |θ| < 1

2
l(a)

}
,

and by equation (6) this is:⋃
a∈IR

exp({x = a} ∩D∗) = exp(D∗).

This proves parts 1 and 2 of the following:

Proposition 31 1. exp(D∗) is the circular sym-
metrization of exp(D), where D is a domain and D∗

is the Steiner symmetrization of this domain.
2. If for all a ∈ IR, l(a) < 2π, then the intersection
arcs {eaeiθ | |θ| < (1/2)l(a)} are simple (i.e. they do
not pass through any point more than once).
3. If for all a ∈ IR, l(a) < 2π, then exp(D∗) is a
simply connected domain.

Proof.
We only need to prove part 3 (because part 1 and
part 2 were proven above). However, part 3 follows
at once by part 2 and by the fact that the Steiner
symmetric domain D∗ is a simply connected domain.
�

Using the result of Albert Baernstein (Theorem
6 in [2]) we have the following:

Theorem 32 Let f ∈ H(U) and let us denote D =
f(U), and assume that for any a ∈ IR we have
l(a) < 2π. Also suppose that f(0) ≥ 0. Let
F ∈ H(U) be a conformal mapping of U onto D∗,
where F (0) = |f(0)| = f(0) and where D∗ is the
Steiner symmetrization of D.
If Φ is a convex non-decreasing function on (−∞,∞),
then for all r, 0 ≤ r < 1, we have:∫ π

−π
Φ(<{f(reiθ)})dθ ≤

∫ π

−π
Φ(<{F (reiθ)})dθ.

Proof.
By Proposition 31(1): exp(D∗) is the circular sym-
metrization of exp(D). By our assumption on f
(∀ a ∈ IR, l(a) < 2π), and by Proposition 31(2), the
mapping: exp : D∗ → exp(D∗), is injective and so
conformal. We recall that the mapping: F : U → D∗

is conformal and F (0) = |f(0)|. Hence the com-
position: exp(F ) : U → exp(D∗), is a conformal
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mapping of U onto exp(D∗) which is a simply con-
nected domain (as should be the case), by Proposition
31(3). Also we have: exp(F (0)) = exp(|f(0)|) =
exp(f(0)), where the last equality follows by our as-
sumption, f(0) ≥ 0.

To sum up we have g(z) = exp(f(z)) ∈ H(U)
where by the above notations: g : U → exp(D) =
g(U). The mapping G(z) = exp(F (z)) is a confor-
mal and onto mapping G : U → exp(D∗) that sat-
isfies G(0) = exp(F (0)) = exp(f(0)) = g(0) =
|g(0)|. The simply connected domain exp(D∗) is the
circular symmetrization of exp(D) = g(U). Thus the
pair of mappings g, G satisfy all the assumptions of
Albert Baernstein result, Theorem 6 in [2]. Using this
theorem we obtain:∫ π

−π
Φ(log |g(reiθ)|)dθ ≤

∫ π

−π
Φ(log |G(reiθ)|)dθ,

for any convex and non-decreasing Φ on (−∞,∞),
and any r, 0 ≤ r < 1. Plugging in the expressions
g(z) = exp(f(z)) and G(z) = exp(F (z)) we obtain:∫ π

−π
Φ(log | exp(f(reiθ))|)dθ ≤

≤
∫ π

−π
Φ(log | exp(F (reiθ))|)dθ.

Finally, since log | exp(α)| = <{α} for any α ∈ C,
we get:∫ π

−π
Φ(<{f(reiθ)})dθ ≤

∫ π

−π
Φ(<{F (reiθ)})dθ,

where F is the Steiner symmetrization of f . �

If we take Φ(x) = epx for some p > 0, and
take,

Φ(x) =

{
xp , x ≥ 0
0 , x < 0

for some p > 1, then we note that both functions are
convex non-decreasing on (−∞,∞), and we deduce
from Theorem 32 the following:

Corollary 33 Let f ∈ H(U) satisfy l(a) < 2π for
all a ∈ IR and f(0) ≥ 0, and let F : U → f(U)∗

(f(U)∗ is the Steiner symmetrization of f(U)) be a
conformal onto with F (0) = f(0), then:
1. For any 0 < p we have:∫ π

−π
exp

(
p<{f(reiθ)}

)
dθ ≤

≤
∫ π

−π
exp

(
p<{F (reiθ)}

)
dθ, 0 ≤ r < 1.

2. For any 1 < p we have:∫ π

−π

(
<{f(reiθ)}

)p
+
dθ ≤

≤
∫ π

−π

(
<{F (reiθ)}

)p
+
dθ, 0 ≤ r < 1.

Here if a ∈ IR, then we denote:

a+ =

{
a , 0 ≤ a
0 , a < 0

In particular if in 2 we take the p’th root from both
sides and than let p→∞, we obtain:

sup
θ

(
<{f(reiθ)}

)
+
≤ sup

θ

(
<{F (reiθ)}

)
+
, 0 ≤ r < 1.

The last inequality in Corollary 33 is clear by the def-
inition of the Steiner symmetrization, for the value
r = 1 (if that makes sense).

Remark 34 1. In fact it follows by the definition of
Steiner symmetrization that: if h(z) = <{f(z)} and
if H(z) = <{F (z)}, then we have h(U) = H(U)
and in particular:

lim
r→1−

inf
θ
<{f(reiθ)} = lim

r→1−
inf
θ
<{F (reiθ)},

and also

lim
r→1−

sup
θ
<{f(reiθ)} = lim

r→1−
sup
θ
<{F (reiθ)}.

2. Another example for a concrete inequality we can
deduce from Theorem 32 is, for example, the follow-
ing: we take for Φ(x) the function Φ(x) = exp(xp+),
p > 1. The first two derivatives on x > 0 are,

Φ′(x) = pxp−1 exp(xp) > 0,

Φ′′(x) = pxp−2(p− 1 + pxp) exp(xp) > 0.

For x ≤ 0 we have Φ(x) ≡ 1, a constant function.
Using this Φ(x), we obtain by Theorem 6.2 the fol-
lowing result:

Corollary 35 Let f ∈ H(U) satisfy l(a) < 2π for
all a ∈ IR, and f(0) ≥ 0, and let F : U → f(U)∗

be conformal, onto with F (0) = f(0), then for any
p > 1 we have the following inequality:∫ π

−π
exp

((
<{f(reiθ)}

)p
+

)
dθ ≤

≤
∫ π

−π
exp

((
<{F (reiθ)}

)p
+

)
dθ, for all 0 ≤ r < 1.
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Remark 36 In fact Corollary 35 is a special case of
the following more general statement:
If f(z) and F (z) are as in Corollary 35, and if Ψ(z) is
any entire function with non-negative MaClaurin co-
efficients (i.e. Ψ(n)(0) ≥ 0 for any n ∈ Z+∪{0}, then
for any p > 1 and any 0 ≤ r < 1 we have:∫ π

−π
Ψ

((
<{f(reiθ)}

)p
+

)
dθ ≤

≤
∫ π

−π
Ψ

((
<{F (reiθ)}

)p
+

)
dθ.

Proof.
By the assumptions we have: Ψ(z) =

∑∞
n=0 anz

n,
with an ≥ 0 for n ∈ Z+ ∪{0}. Now the claim follows
by Corollary 33(2). For by that corollary and the non-
negativity of the coefficients an, we get:∫ π

−π
an
(
<{f(reiθ)}

)pn
+
dθ ≤

≤
∫ π

−π
an
(
<{F (reiθ)}

)pn
+
dθ,

∫ π

−π

∞∑
n=0

an

((
<{f(reiθ)}

)p
+

)n
dθ ≤

≤
∫ π

−π

∞∑
n=0

an

((
<{F (reiθ)}

)p
+

)n
dθ,

∫ π

−π
Ψ

((
<{f(reiθ)}

)p
+

)
dθ ≤

≤
∫ π

−π
Ψ

((
<{F (reiθ)}

)p
+

)
dθ.

�

The change of order in the integration and the
summation is easily justified.

Remark 37 In the above results, the function f ∈
H(U) was assumed to satisfy l(a) < 2π, ∀ a ∈ IR. In
the case we had another uniform (finite) upper bound,
say l(a) < M , ∀ a ∈ IR, we could have looked (in
case 2π < M ) in the scaled function, 2πf(z)/M ,
and get instead of the inequality of Theorem 32 the
following inequality:∫ π

−π
Φ(

2π

M
<{f(reiθ)})dθ ≤

∫ π

−π
Φ(

2π

M
<{F (reiθ)})dθ.

What if there was no uniform upper bound on the
l(a)’s, i.e. supa∈IR l(a) = +∞? We would not like
to conformay map f(U) into a bounded subset of C,
say by an inversion: (

α

z − β

)
.

The reason is that there does not seem to be a sim-
ple relation between the Steiner symmetrization of the
original function f(z) and the Steiner symmetrization
of the transformed mapping:(

α

f(z)− β

)
.

What we can do is the following: Pick a number r0,
0 < r0 < 1 and consider the function f(r0z). We de-
note by F (r0, z) the Steiner symmetrization of f(r0z).
Since the image: {f(r0z) | |z| < 1} is a bounded set,
our theorems give us comparison between integrals
that involve f(r0z) and those that involve F (r0, z).
We now have to estimate the relations between in-
tegrals that involve F (r0, z) and those that involve
the Steiner symmetrization F (reiθ), when r0 → 1−.
For example, is the following limit claim holds true?
limr0→1− F (r0, z) = F (z), |z| < 1. In what sense?
(uniform, uniform on compacta, other). This might
not be easy, for we are treating the case in which f(U)
is unbounded vertically, i.e. supa∈IR l(a) = +∞
while f(r0U) is a bounded set for 0 < r0 < 1. The
mappings F (z) : U → f(U)∗, F (r0, z) : U →
f(r0U)∗ are conformal and onto and satisfy the con-
ditions: F (0) = f(0) = f(r0 · 0) = F (r0, 0).

We need a kind of a continuity claim on families
of conformal mappings U → Dr0 such thatDr0 → D
when r0 → 1− in some sense (What do we mean
by Dr0 → D?). Once again, in our model the do-
mains Dr0 (0 < r0 < 1) are bounded, while D is
unbounded.

7 Steiner symmetrization and zero
sets of bounded holomorphic func-
tions in U

In this section we will point at some facts related to
Problem number 2, on the list of problems in sec-
tion 5. We will use the following definition: for
2 ≤ p ≤ ∞, 0 < α < ∞ we define S(p, α) =
{f ∈ H(U) | f is univalent inU, f(0) = 0, 1 ≤
f ′(0), α ≤ ||f ||p}. We note that our normalization in
the defining equation of S(p, α) included the inequal-
ity, 1 ≤ |f ′(0)| while now we gave up the absolute
value and use instead 1 ≤ f ′(0). Problem 2 asks the
following: Let f ∈ S(2, α) and let {cφn}∞n=1 be a
sequence of shrinking factors that deform f(U) into
the minimal disk. What is the value of the following
convergent infinite product

∏∞
n=1 cφn?

For f ∈ S(2, α) and φ ∈ IR, we denoted by
gφ the Steiner symmetrization of eiφf(z). It has the
following four properties:
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1. gφ ∈ H(U) is one-to-one in U , and gφ(0) = 0.

2. 1 ≤ |eiφf ′(0)| ≤ g
′
φ(0). Note that

|eiφf ′(0)| = f ′(0) ≥ 1.

3. α ≤ ||eiφf ||2 ≤ ||gφ||2. Note that
||eiφf ||2 = ||f ||2 ≥ α.

4.
∫ π
−π |g

′
φ(eiθ)|dθ ≤

∫ π
−π |eiφf ′(eiθ)|dθ. Note

that
∫ π
−π |eiφf ′(eiθ)|dθ =

∫ π
−π |f ′(eiθ)|dθ.

The shrinking factor that corresponds to f and
to φ is the following number:

cφ = max

{
1

g
′
φ(0)

,
α

||gφ||2

}
.

Thus by properties 2 and 3 we have 0 < cφ ≤ 1. By
Theorem 3.4, if 0 < α < ∞, and if f ∈ S(2, α)
and {φn}∞n=1 is any sequence of real numbers, then
0 <

∏∞
n=1 cφn ≤ 1. This theorem was the source of

Problem 2.

Proposition 38
∞∑
n=1

log

(
1

cφn

)
<∞. (7)

∞∑
n=1

(1− cφn) <∞. (8)

Proof.
We prove equation (7): By Theorem 21 we have:
log

∏∞
n=1 cφn =

∑∞
n=1 log cφn > −∞. Hence∑∞

n=1 log(1/cφn) <∞.
Now we prove equation (8): We write
cφn = 1 − bφn . Then 0 ≤ bφn < 1. Also we
have

∏∞
n=1 cφn =

∏∞
n=1(1 − bφn). For 0 ≤ b < 1

we have e−b = 1 − b + b2/2! − . . . ≥ 1 − b,
because this MaClaurin expansion is a Leibniz series.
This also implies that: 0 ≤ e−b − (1 − b) ≤ b2/2.
So

∏∞
n=1 e

bφn ≥
∏∞
n=1(1 − bφn) > 0. Thus:

exp(−
∑∞
n=1 bφn) > 0 and so

∑∞
n=1 bφn < ∞.

But bφn = 1 − cφn and we conclude that∑∞
n=1(1− cφn) <∞. �

The inequality
∑∞
n=1(1 − cφn) < ∞ says that

the sequence {cφn}∞n=1 satisfies the Blaschke con-
dition. Hence this sequence is precisely the zero
set of a bounded analytic function in U . In fact the
corresponding Blaschke product converges in U :

∞∏
n=1

(
z − cφn
1− cφnz

)
.

Proposition 39 If 0 < α < ∞, and if f ∈ S(2, α),
and if {φn}∞n=1 is any sequence of real numbers, then
the infinite product:

B{φn}(z) =
∞∏
n=1

(
z − cφn
1− cφnz

)
,

is a Blaschke product, i.e. it is uniformly convergent
on compact subsets of U , and {cφn}∞n=1 is the zero
set of the resulting bounded (by 1) analytic function,
B{φn}(z).

This naturally leads to the question: is the
converse of Proposition 39 holds true?

Problem 2’. Let:

∞∏
n=1

(
z − cαn
1− cαnz

)

be a Blaschke product all of whose zeros {αn}∞n=1
are positive numbers, 0 < αn ≤ 1. Is there a
number 0 < α < ∞ and a function f ∈ S(2, α),
and a sequence of real numbers {φn}∞n=1 such that
∀n ∈ Z+, cφn = αn the corresponding shrinking
factors?

An explanation. We are given the data {αn}∞n=1 and
should come up with an 0 < α < ∞, f ∈ S(2, α)
and real numbers {φn}∞n=1 such that:
1. If gφ1 is the Steiner symmetrization of eiφ1f then,

cφ1 = max

{
1

g′φ1(0)
,

α

||gφ1 ||2

}
= α1, and,

gφ1 = cφ1gφ1 .

2. If (gφ1)φ2 is the Steiner symmetrization of eiφ2gφ1
then,

cφ2 = max

{
1

gφ1
′
φ2

(0)
,

α

||(gφ1)φ2 ||2

}
= α2, and

(gφ1)φ2 = cφ2(gφ1)φ2 .

3. If ((gφ1)φ2)φ3 is the Steiner symmetrization of
eiφ3(gφ1)φ2 then,

cφ3 = max

{
1

((gφ1)φ2)′φ3(0)
,

α

||((gφ1)φ2)φ3 ||2

}
= α3,

and ((gφ1)φ2)φ3 = cφ3((gφ1)φ2)φ3 , etc . . .

An idea.
We show that for each N ∈ Z+ we can construct
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a number 0 < α < ∞, a function fN ∈ S(2, α)

and real numbers {φ(N)
n }∞n=1 such that this solves

the finite problem, i.e. ∀n ∈ Z+, 1 ≤ n ≤ N ,
c
φ
(N)
n

= αn the corresponding shrinking factors. This
gives a sequence of functions {fN}∞N=1 ⊆ S(2, α),
and a sequence of sequences of shrinking factors
{c
φ
(N)
n
}Nn=1 = {α1, . . . , αN} on the numbers

{φ(N)
n }∞n=1. We then might try to prove that the

Blaschke condition
∑∞
n=1(1− αn) <∞ implies that

the limit f(z) = limN →∞fN (z) exists uniformly
on compact subsets ofU . We also might hope to prove
that the infinite set of limits: limN→∞ φ

(N)
n = φ

(∞)
n

exist and finally that the data f(z) ∈ S(2, α)

and {φ(∞)
n }∞n=1 solves Problem 2’, namely that we

have c
φ
(∞)
n

= αn, ∀n ∈ Z+. So we first want to solve:

Problem 2 (finite). Given N numbers αn,
0 < α1 < α2 < . . . < αN < 1, find a num-
ber 0 < α < ∞ and a function fN ∈ S(2, α)
and a sequence of real numbers {φn}Nn=1 such that
cφn = αn, n = 1, 2, . . . , N .

Remark 40 We recall that we have defined the
shrinking factor as follows:

cφ = max

{
1

g
′
φ(0)

,
α

||gφ||2

}
, so 0 < cφ ≤ 1,

and since cφ = 1 − bφ, also bφ = 1 − cφ. Thus we
have the following identities:

bφ = min

{
1− 1

g
′
φ(0)

, 1− α

||gφ||2

}
,

and
1

cφ
= min

{
g
′
φ(0),

1

α
· ||gφ||2

}
.

Thus we can restate Proposition 38 as follows:

Proposition 41

∞∑
n=1

log

(
min

{
g
′
φn(0),

1

α
· ||gφn ||2

})
<∞. (9)

∞∑
n=1

min

{
1− 1

g
′
φn

(0)
, 1− α

||gφn ||2

}
<∞. (10)

We will need to use results on the convergence of se-
quences of conformal mappings. The next section sur-
veys the results we will be using.

8 Convergence of a sequence of con-
formal mappings

We will use the following two references:
1. [6], sections 120 through 124, pages 74-77.
2. [11], section 5 pages 54-62.

The exposition in [11] is easier for us being
more modern but the results were proven by Con-
stantine Carathéodory in [6]. So we take the parts
we need mostly from [11]. Section 5 in [11] is titled:
”Convergence theorems on the conformal mapping of
a sequence of domains”:
Suppose we have a sequence of univalent domains
B1, B2, . . ., in the z-plane, each including z = 0.
If there exists a disk |z| < ρ, where ρ > 0, that
belongs to all the domains in Bn, we define the kernel
of this sequence of domains as the largest domain
containing z = 0 such that an arbitrary closed subset
of it belongs to all the domains Bn from some n on.
By ”largest domain” is meant the domain containing
any other domain possessing this property. If such
a disk does not exist, the kernel of the sequence
of domains B1, B2, . . . is defined to be the point
z = 0. We shall say that the sequence of domains
B1, B2, . . . converges to the kernel B, and we shall
denote this by writing Bn → B, if every subsequence
of these domains has B as its kernel. In partic-
ular, if a sequence of simply connected domains,
B1, B2, . . . , Bn, . . . that include z = 0 converges
to the limiting domain B (also including z = 0) in
the sense that all boundary points of the domains Bn
from some n on are arbitrary close to the boundary of
the domain B, and all points of the boundary of the
domain B are arbitrary close to the boundaries of the
domains Bn, then this sequence has the domain B as
its kernel and it converges to that kernel.

In our application later on the domains in the
sequence of domains are Steiner symmetric and
will turn out to satisfy exactly the assumptions of
the previous paragraph.

Convergence to the kernel is guaranteed also
for a sequence of domains Bn that include z = 0
and satisfy the condition B1 ⊆ B2 ⊆ B3 ⊆ . . .,
or for a sequence of domains Bn that contains a
neighborhood of the point z = 0 and satisfy the
condition B1 ⊇ B2 ⊇ B3 ⊇ . . ..

Theorem A (Carathéodory, [7]). Suppose that
we have a sequence of functions z = fn(ξ), where
n = 1, 2, . . ., that are regular in the disk |ξ| < 1.
Suppose fn(0) = 0 and f

′
n(0) > 0 for n = 1, 2, . . ..

Suppose that, for each n, the function fn(ξ) maps the
disk |ξ| < 1 onto a domain Bn. For the sequence
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{fn(ξ)} to converge in |ξ| < 1 to a finite function,
it is necessary and sufficient that the sequence {Bn}
converge to the kernel B, which is either the point
z = 0 or a domain having more than one boundary
point. When convergence exists, it is uniform inside
the disk |ξ| < 1. If the limit function f(ξ) 6≡ const.,
it maps |ξ| < 1 onto the kernel B, and the sequence
{φn(z)} of inverse functions φn(z) converges uni-
formly inside B to the function φ(z) inverse to f(ξ).
(Thus it is assumed that the functions fn(ξ) are
conformal).

Remark 42 It was proved in [4] and in [16] that the
conditions of Theorem A are also necessary and suf-
ficient for convergence in mean of {f ′n(ξ)} to f

′
(ξ),

that is, necessary and sufficient for:

lim
n→∞

∫
B
|f ′n(ξ)− f ′(ξ)|2dσ = 0,

where f
′
n(ξ) is taken equal to 0 outside the domainBn

Theorem A gives the conditions for convergence of
univalent functions only in the open disk |ξ| < 1.
For the convergence of univalent functions in the
closed disk |ξ| ≤ 1, we give the following theorem,
confining ourselves to domains of the Jordan type.

Theorem B (Radó, [17]). Let {Bn}, n = 1, 2, . . .
denote a sequence of simply connected domains
each including the point z = 0 and each bounded
by a Jordan curve. Denote the boundary of Bn by
Cn. Suppose that the sequence {Bn} converges to
a domain B (its kernel) bounded by a Jordan curve
C. Let {fn(ξ)} denote a sequence of functions fn(ξ)

such that, for each n, fn(0) = 0, f
′
n(0) > 0 and

fn(ξ) maps the unit disk |ξ| < 1 onto the domain
Bn. For the sequence {fn(ξ)} to converge uniformly
on the closed disk |ξ| ≤ 1 to a function z = f(ξ)
that vanishes at 0, has positive first derivative at 0,
and maps the open disk |ξ| < 1 onto the domain B,
it is necessary and sufficient that for every ε > 0,
there exists a number N > 0 such that, for n > N ,
there exists a continuous one-to-one correspondence
between the points of the curves Cn and C such
that the distance between any point of Cn and the
corresponding point of C will be less than ε.

Remark 43 In the case of domains with arbitrary
boundaries, not in particular of Jordan type, the ques-
tion of convergence in the closed disk, has been thor-
oughly investigated by Markuševič, [16].

We are now ready to tackle Problem number 2 that
appear on the list of problems in section 5.

9 The product of infinitely many
shrinking factors

Let f(z) ∈ S(2, α), and let {φn}∞n=1 be any se-
quence of real numbers. We defined recursively: gφ1
is the Steiner symmetrization of eiφ1f(z), and gφ1 =
cφ1gφ1 where cφ1 is the shrinking factor given by,

cφ1 = max

{
1

g
′
φ1

(0)
,

α

||gφ1 ||2

}
.

Next, (gφ1)φ2 is the Steiner symmetrization of
eiφ2gφ1(z), and (gφ1)φ2 = cφ2(gφ1)φ2 , where cφ2 is
the shrinking factor given by,

cφ2 = max

{
1

(gφ1)
′
φ2

(0)
,

α

||(gφ1)φ2 ||2

}
.

The process proceeds indefinitely.

Theorem 44 Let f(z) ∈ S(2, α), then for any se-
quence {φn}∞n=1 of real numbers the limit function
F = limn→∞(. . . ((gφ1)φ2) . . .)φn exists and the con-
vergence is uniform on compact subsets of U . The im-
age F (U) is a Steiner symmetric domain that includes
z = 0 and F ∈ S(2, α).

Proof.
Let us define Bn = (. . . ((gφ1)φ2) . . .)φn(U),
n = 1, 2, 3, . . .. Then by the definition of the recur-
sive process, since (. . . ((gφ1)φ2) . . .)φn is the Steiner
symmetrization of eiφn(. . . ((gφ1)φ2) . . .)φn−1 , it fol-
lows that the domain Bn = (. . . ((gφ1)φ2) . . .)φn(U)

is Steiner symmetric, but Bn = cφnBn, a multiple
by a number 0 < cφn ≤ 1 of a Steiner symmetric
domain. Hence Bn itself is Steiner symmetric, and
in particular the sequence {Bn}∞n=1 is a sequence
of simply connected domains, each of which con-
tains the point z = 0, and by the definition of
the Steiner symmetrization all of the domains Bn
contain the disk |z| < dist(0, ∂f(U)). Hence,
the kernel of {Bn}∞n=1, say B, exists and ∂B
is the faithful limit of ∂Bn as n → ∞. Hence
Bn → B and by Theorem A (Carathéodory) the
limit F = limn→∞(. . . ((gφ1)φ2) . . .)φn exists and is
uniform on compact subsets of U . Thus B = F (U),
and F : U → F (U) is conformal and satisfies the
following normalization F (0) = 0, F

′
(0) > 1 and

||F ||2 ≥ α. This proves that F ∈ S(2, α) which
is consistent with the fact that S(p, α) is a compact
family (recall the proof of Proposition 3). Moreover,
the limit F (U) of the Steiner symmetric domains
{(. . . ((gφ1)φ2) . . .)φn(U)}∞n=1 is Steiner symmetric.
This is consistent with fact that F (U) is a simply
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connected domain being the conformal image of U . �

We can now give a sharp lower bound for the
infinite product

∏∞
n=1 cφn of the shrinking factors,

that appears in the Problem 2 on the list of problems
in section 5.

Theorem 45 1. Let f ∈ S(2, α) and let {φn}∞n=1
be any sequence of real numbers. Let {cφn}∞n=1 be
the corresponding sequence of the shrinking factors.
Then we have the following estimate:

max {1, α}·
{

1

π

∫ 2π

0
<{f(eiθ}<{eiθf ′(eiθ)}dθ

}−1/2
≤

≤
∞∏
n=1

cφn ≤ 1,

and these bounds on
∏∞
n=1 cφn are sharp bounds.

2. Let us define recursively the following se-
quence of mappings: fφ1 is the Steiner sym-
metrization of eiφ1f . For n ∈ Z+, let
(. . . ((fφ1)φ2) . . .)φn+1 be the Steiner symmetrization
of eiφn+1(. . . ((fφ1)φ2) . . .)φn . Then the limit function
G(z) = limn→∞(. . . ((fφ1)φ2) . . .)φn(z) exists and is
uniform on compact subsets of U . Moreover, we have
the following identity:

∞∏
n=1

cφn = max

{
1

G′(0)
,

α

||G||2

}
.

Remark 46 Theorem 45 gives some kind of solution
to Problem 2 on the list of problems that appear in
section 5.

A proof of Theorem 45.
1. We will use the recursive sequence {fφn}∞n=1,
that was defined in part 2 of Theorem 9.2.
Then as in the proof of Theorem 44 that dealt
with the sequence {(. . . ((gφ1)φ2) . . .)φn}∞n=1, based
on Theorem A (Carathéodory), the limit G =
limn→∞(. . . ((fφ1)φ2) . . .)φn exists and is uniform
on compact subsets of U . We note that the re-
cursive process outlined by the newer sequence
{(. . . ((fφ1)φ2) . . .)φn}∞n=1 is simpler than the origi-
nal recursive process that was described on section
3, in that we do not multiply by the shrinking factors
cφn after each symmetrization was done. The purpose
of those multiplications was to optimize, i.e. make
as small as possible, each element of the sequence of
functions produced. That without leaving the family
S(2, α). We will soon see that if our goal was to op-
timize the limiting function and not the each element
of the sequence, then this can be accomplished by a

single multiplication by just one shrinking factor. In
fact this is the key idea for the current proof.

The first step is to note that each element of
the old sequence, the g-sequence, is a multiple by
a constant of the corresponding element of the new
system, the f -sequence. The constant, though is
not a single shrinking factor. Clearly by the defini-
tions of gφ1 and of fφ1 we have the formula gφ1 =
cφ1fφ1 . Next, (fφ1)φ2 is the conformal mapping U →
(eiφ2fφ1(U))∗ where A∗ denotes the Steiner sym-
metrization of the domain A. This conformal map-
ping is normalized as follows: (fφ1)φ2(0) = 0 and
(fφ1)

′
φ2

(0) > 0. That definition of (fφ1)φ2 should
be compared with the definition of (gφ1)φ2 which
equals the shrinking factor, cφ2 multiplying the con-
formal mapping U → (eiφ2gφ1(U))∗. But we already
have the formula eiφ2gφ1(U) = eiφ2(cφ1fφ1(U)) =

cφ1(eiφ2fφ1(U)). Thus we deduce that the Steiner
symmetrization of eiφ2gφ1(U) equals to cφ1 times the
Steiner symmetrization of eiφ2fφ1(U). In other words
the relation between the image of the first confor-
mal mapping to the image of the second conformal
mapping is multiplication by the shrinking factor cφ1 ,
where we recall that 0 < cφ1 ≤ 1. Hence by composi-
tion of conformal mappings we get the following (sec-
ond) formula (gφ1)φ2 = cφ2cφ1(fφ1)φ2 . Similarly, the
general case follows by an inductive argument. We
obtain the general formula:

(. . . ((gφ1)φ2) . . .)φn =

(
n∏
k=1

cφk

)
·(. . . ((fφ1)φ2) . . .)φn ,

∀n ∈ Z+.

Passing to the limit n→∞ gives us:

lim
n→∞

(. . . ((gφ1)φ2) . . .)φn =

( ∞∏
k=1

cφk

)
·(. . . ((fφ1)φ2) . . .)φn ,

or simply (using our notations for the limits):

F =

( ∞∏
k=1

cφk

)
·G. (11)

If the sequence {φn}∞n=1 deforms f(U) to a disk
D(0, R) in the newer process, then this disk has an
area which equals the area of f(U). We obtain the
following equation with the unknown R:

πR2 =

∫ 2π

0
<{f(eiθ)}<{eiθf ′(eiθ)}dθ.

Hence:

R =

{
1

π

∫ 2π

0
<{f(eiθ)}<{eiθf ′(eiθ)}

}1/2

.
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This means that for this particular sequence {φn}∞n=1,
We obtain the very simple formula for the conformal
mapping G, namely that G : U → D(0, R), given by
G(z) = R·z. In particular we getG

′
(0) = ||G||2 = R

and hence the corresponding shrinking factor, which
optimize G is given by:

max

{
1

R
,
α

R

}
= max {1, α} · 1

R
=

= max {1, α}
{

1

π

∫ 2π

0
<{f(eiθ)}<{eiθf ′(eiθ)}

}−1/2
.

This concludes the proof of the inequality of part 1,
including its sharpness.
2. In the general case the limiting function for an ar-
bitrary sequence of real numbers {φn}∞n=1 is the con-
formal mapping G : U → G(U), where G(0) = 0

and G
′
(0) > 0. Now the general shrinking factor (of

G) is given by:

c = max

{
1

G′(0)
,

α

||G||2

}
.

On the other hand, by equation 11 this shrinking factor
is given by the infinite product:

c =
∞∏
n=1

cφn .

This concludes the proof of part 2 of our theorem. �

Corollary 47 Let f ∈ S(2, α) and let {φn}∞n=1 be
any sequence of real numbers. Let G be the lim-
iting function of the newer recursive process, i.e.
G = limn→∞(. . . ((fφ1)φ2) . . .)φn . Then we have the
sharp estimate:

max {1, α}·
{

1

π

∫ 2π

0
<{f(eiθ)}<{eiθf ′(eiθ)}dθ

}−1/2
≤

≤ max

{
1

G′(0)
,

α

||G||2

}
≤ 1.

In particular, if α is taken to be small enough, then:

G
′
(0) ≤

{
1

π

∫ 2π

0
<{f(eiθ)}<{eiθf ′(eiθ)}dθ

}1/2

.

This last upper bound is sharp.
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